SITCOMTN-163

Source Selection for Abell 360 in ComCam Data#

Abstract

We cover the source selection done for the Abell 360 ComCam cluster study focusing on color and photo-z cuts. Identification of cluster members via the red sequence and photo-z offers a science focused validation of photometry with ComCam. We are able to cross-match with DESI spectroscopic redshifts to offer an independent validation suite on photo-z estimates. We make various color and photo-z cuts to generate N(z)s and shear profiles. We find that both cuts are quite robust to various choices made and can produce a shear profile for Abell 360. Both methods should be applicable to generating a consistent mass estimate for the cluster.

Introduction#

The Rubin ComCam observing campaign undertaken at the end-of-year 2024 covered seven fields, among which the low ecliptic latitude Rubin SV 38 7 field. This field contains the Abell 360 galaxy cluster, an intermediate mass cluster (\(M_{\rm 500c} \sim 6 \times 10^{14}\ M_{\odot}\), e.g. {cite:p} Planck15) at z=0.22, that we use as a commissioning demonstrator of Rubin capabilities for cluster WL studies. In order to best measure the shear profile of the cluster, we would ideally only measure the shapes of galaxies that are lensed by the cluster, i.e. source galaxies that are behind the cluster. This can be done by identifying and removing cluster members via the red sequence, an overdensity on a color-magnitude diagram caused by the cluster members, or by removing objects near and below the redshift of the cluster. This TechNote goes over both methods to define the source selection of galaxies used to measure the shear profile. We will discuss both methods, associated verification, the estimated n(z) from each method, and the shear profile from the various sources.

Dataset#

The Rubin SV 38 7 field has been observed in g (44 visits), r (55 visits), i (57 visits) and z (27 visits) [Guy et al., 2025] with no visits in u and y-band. The DP1 catalog includes various flux measurements including cModel and gaap Add reference for the model? along with HSM shape measurements [Mandelbaum et al., 2006, Hirata and Seljak, 2003]. The HSM resolution factor, defined as \(R = 1-\frac{T_\textrm{PSF}}{T_\textrm{I}}\), can be calculated from the catalog.Explain what it is? Or remove from this section if it’s too technical Photometric redshift estimates are not included in the DP1 catalog but have been created as outlined in [Graham, 2025]. Similarly, details on PSF and photometric calibration are located in [Combet et al., 2025] and photometric calibration technote . Here, we will focus on the various cuts made to generate the cluster lensing sample for Abell 360.

Note

Photometric calibration technote is still in draft and has not been made on SITCOM yet

First, we apply basic quality flags to remove objects that have caused a failure in the flux measurements, namely from saturation, cosmic rays, and spurious detections. Each quality flag is a boolean which is set to True if the algorithm fails. The flags and number of objects affected by the flag are listed in Table 1.

Table 1 Quality flags and number of objects affected by flag.#

Flag Name

Number of Objects

refExtendedness

24892

i_iPSF_flag

62462

i_hsmSHapeRegauss_flag

91836

g_cModel_flag

4016

r_cModel_flag

4228

i_cModel_flag

4137

z_cModel_flag

3173

g_gaapFlux_flag

0

r_gaapFlux_flag

0

i_gaapFlux_flag

6

z_gaapFlux_flag

0

Explain what this flag correspond to Within 0.5 degrees of the brightest central galaxy (BCG) located at (RA, DEC) = (37.865017, 6.982205) we have 58676 objects with measurements in griz bands. The counts per bin is shown in Fig. 1 with griz bands reaching a depth of at 24.9, 24.5, 24.3, and 23.6 mags respectively.missing word, how do you compute those number exactly? The star-galaxy separation is done using the refExtendedness flag, which indicate objects as galaxies if \(\frac{\textrm{flux}_\textrm{psf}}{\textrm{flux}_\textrm{cModel}} < .985\). The separation leads to a sample of 52309 galaxies (89%) and 6367 stars (11%). Is Fig1 only galaxy? If so, put the star/galaxy separation before. If not, change the legend.

_images/galaxy_dist.png

Fig. 1 Distribution of galaxy magnitudes with (approximate) limiting magnitude shown as histogram with griz corresponding to blue, orange, green, and red and the magnitude limit per band shown as solid vertical line in the same color.#

Color-cuts#

We can select cluster members by identifying the red sequence [citation?] in a color-magnitude diagram. Due to the lack of observations in z we focus on the gri bands and the colors (g-r, r-i, g-i) from this set. To correct for varying aperture sizes, we use gaap fluxes when combining bands for colors and use the cModel flux when calculating magnitudes. To identify the red sequence we first restrict to detections within 0.1 degrees (1.3 Mpc) of the BCG which leaves 2194 galaxies. The color-magnitude diagram is shown below in Fig. 2

_images/CMD_nors.png

Fig. 2 Color-magnitude diagrams for galaxies near the BCG using cModel r magnitude on x-axis and gaap calculated colors on the y-axis. From left to right we show the g-i, r-i, and g-r colors with the red sequence overdensity clearly visible.#

The red sequence is identified per color by eye with a limiting magnitude of \(r < 24\) also applied and shown in Fig. 3 giving 286, 316, 286 objects in the g-i, r-i, and g-r CMDs respectively. Requiring that an object be in all three red sequences restricts us to 216 objects and is shown in Fig. 4.

_images/CMD_rs.png

Fig. 3 Red sequence members identified by eye and adding a magnitude limit of \(r < 24\). From left to right we show the g-i, r-i, and g-r colors.#

_images/CMD_all_rs.png

Fig. 4 Multi-color red sequence members. From left to right we show the g-i, r-i, and g-r colors.#

When applying the color cuts to the entire sample, we remove 873 galaxies and remain with 57803 galaxies.

Photo-Z Selection#

Photometric redshift (photo-z) selection is another option to remove any objects that would not be lensed by the cluster and thus dilute the signal. The photo-zs were estimated using FlexZBoost (FZB) [Dalmasso et al., 2020, Izbicki et al., 2017], TreePhotoZ (TPZ) [Carrasco Kind and Brunner, 2013], k-Nearest Neighbors (kNN) [Schmidt et al., 2023], and Bayesian Photo-zs (BPZ) [Benitez, 2000] as implemented in RAIL [Schmidt et al., 2023] using the 4 available bands griz on cModel fluxes. These estimators were chosen as kNN and BPZ will be provided by the Rubin project for future data releases while we expect FZB and TPZ to be readily available from the community. The estimators were trained on the same 4 bands in the ECDFS field and then applied to the cluster field. Since the cluster redshift is 0.22 [Quintana and Ramirez, 1995], we can place a simple cut on the photo-z point estimates to remove any galaxies that would be unlensed by the cluster.

We plot the redshift distribution for kNN and BPZ in Fig. 5 and for FZB and TPZ in Fig. 6.

Note

Add Eric’s \(\sigma_z < 0.15\) quality cut

_images/bpz_knn.png

Fig. 5 Photometric redshift distribution for the galaxy sample (within 0.5 deg, or 6.4 Mpc, of the central BCG) and with i < 24. Blue histogram is using the kNN median estimate, orange histogram for BPZ median, and the black line represents the cluster location. A faint red line is added to display the location of an additional photo-z cut used, see text for motivation in choosing these additional cuts.#

_images/fzb_tpz.png

Fig. 6 Photometric redshift distribution for the galaxy sample (within 0.5 deg, or 6.4 Mpc, of the central BCG) and with i < 24. Purple histogram is using the FlexZBoost median estimate, blue histogram for TreePZ median, and the black line represents the cluster location. A faint red line is added to display the location of an additional photo-z cut used, see text for motivation in choosing these additional cuts.#

Note

Update the photo-z cuts to only have \(z_{cl} = 0.22 + 0.15\)

In this field, we have overlap with the DESI [Collaboration et al., 2025] BGS [Hahn et al., 2023], ELG [Raichoor et al., 2023], and LRG [Zhou et al., 2023] catalogs, shown in Fig. 7, which allows us to perform simple external validation on the four redshift techniques. To validate the techniques, we compare the photo-z for objects with matches to the DESI sample which we show in Fig. 9 for kNN and BPZ and in Fig. 8 for FZB and TPZ. Both techniques suffer at the low and high \(z\) range which can be attributed to the missing u and y bands but are overall acceptable. For objects with spec-\(z > 0.8\), it is possible that there is a mismatch between the training sample, observed sample, and validation sample which could cause systematic issues for the predictors.

_images/desi_location.png

Fig. 7 Overlap between SV 38-7 field and various DESI subsamples. Note that the BGS sample that covers the low-z regime does not uniformly cover the region and thus we are incomplete in this space. From [Graham, 2025].#

_images/desi_validation_fzbtpz.png

Fig. 8 Validation for FZB and TPZ with spectroscopic redshift on x-axis and estimated photometric redshift on y-axis.#

_images/desi_validation_knnbpz.png

Fig. 9 Validation for kNN and BPZ with spectroscopic redshift on x-axis and estimated photometric redshift on y-axis.#

For kNN and BPZ, we make cuts at photo-\(z = 0.22\) and \(0.45\). The first cut is directly at the cluster redshift and would remove most cluster members if we had perfect photo-zs and the second to remove the spike in the distribution from Fig. 5. For FZB and TPZ, we make cuts at photo-\(z = 0.22\) and \(0.6\). The second cut from TPZ overestimating redshift of objects up until \(z\approx 0.6\) as shown in Fig. 8.

For more details on the matching and performance of other photo-z estimators on this field, and DP1 in general, please refer to [Graham, 2025].

Note

Add sub-section on red sequence + DESI plot. Text about validation with photometry and photo-z

Shear profiles and N(z)#

With a variety of source selection methods available, we can compare the \(N(z)\) and final HSM shear profile from each source to see if the subsamples are relatively stable. Following [Li et al., 2022], we also apply a set of weak lensing cuts to both samples to ensure that the sample has good quality shape measurements. The cuts and values used are listed below in Table 2

Table 2 Weak Lensing Cuts#

Column

refExtendedness > 0.5

i_cModel_mag \(\leq\) 24

\(\frac{\textrm{i_cModelFlux}}{\textrm{i_cModelFluxErr}} \geq 10\)

i_hsmShapeRegauss_e1\(^2\) + i_hsmShapeRegauss_e2\(^2 \leq 4\)

\(1-\frac{T_\textrm{PSF}}{T_\textrm{I}} \geq 0.3\)

i_blendedness \(\leq 0.42\)

Shear Profile#

To calculate the shear profile for each subsample when applying color cuts or photo-z cuts, we first convert from \(e_1\) and \(e_2\) to \(\gamma_1\) and \(\gamma_2\) by applying HSC Y1 shear calibration [Mandelbaum et al., 2018, Mandelbaum et al., 2018].

Once calibrated, we can convert the shears to tangential and cross copmonents using the cluster BCG, located at (RA, DEC) = (37.865017, 6.982205), using

\[\begin{split}\gamma_+ &= -\gamma_1 \cos{2\phi} - \gamma_2\sin{2\phi} \\ \gamma_\times &= \gamma_1 \sin{2\phi} - \gamma_2\cos{2\phi}\end{split}\]

Once calibrated and converted, we can extract a shear profile centered on the BCG and vary the color cuts applied which we present in Fig. 10. Notably, the profile is quite insensitive to the specific color cut chosen with the tangential components located at similar values and the cross component mostly consistent with 0. Similarly, we can apply varied photo-z cuts which we show in Fig. 11 for FZB and TPZ, and in Fig. 12 for kNN and BPZ. While there is a larger spread on the value of the \(\gamma_+\) between the cuts, the signal is quite similar to the color-cut profile and similarly passes the null test of \(\gamma_\times = 0\) aside from the innermost bin which only has \(\sim 30\) galaxies.

_images/shear_profile_cc.png

Fig. 10 The shear profile with varying color cuts. The tangential shear component is shown with circular points and cross shear component with x points. The error bar represents a 95% confidence interval from bootstrapped samples. “All colors” refers to using all three red sequences and is shown in dark blue, “g-i” uses points found only on the \(g-i\) red sequence and is shown in light blue, “r-i” for the \(r-i\) redsequence and shown in light red, and “g-r” for the \(g-r\) redsequence and shown in dark red. The points are staggered on the x-axis for clarity.#

_images/shear_profile_pz_fzbtpz.png

Fig. 11 The shear profile with varying FZB photo-z cuts. Same formatting as above figure. The cut with photo-z > 0.22 is shown in dark blue, photo-z > 0.4 is shown in light blue, photo-z > 0.6 in light red, and photo-z > 0.5 in dark red.#

_images/shear_profile_pz_knnbpz.png

Fig. 12 The shear profile with varying FZB photo-z cuts. Same formatting as above figure. The cut with photo-z > 0.22 is shown in dark blue, photo-z > 0.4 is shown in light blue, photo-z > 0.6 in light red, and photo-z > 0.5 in dark red.#

N(z)#

To estimate the \(N(z)\) when using color cuts, we use the ECDFS photo-zs and apply the same red sequence and weak lensing cuts. The ECDFS field was observed in 6 bands which enables higher quality photo-z estimates and by using the same instrument, we have a very similar selection function between the two fields. The weak lensing cut requiring \(i < 24\) helps mitigate any difference in depth between the two samples. The \(N(z)\) from color cuts is presented in Fig. 13 for kNN and BPZ and in Fig. 14 for FZB and TPZ.

Note

Need to add \(i_{SNR} \geq 10\) cut as well and update these N(z) to actually use the stacked PDFs

_images/ECDFS_nz_knnbpz.png

Fig. 13 The estimated n(z) using ECDFS kNN (top panel) and BPZ (bottom panel) photo-\(z\) estimates and applying the “all colors” red sequence cut. In both panels, the lighter color is used to display the distribution before applying the color cut, and darker after. Note that we have applied several additional weak lensing cuts as apposed to the simple photometry quality flags in Fig. 5.#

_images/ECDFS_nz_fzbtpz.png

Fig. 14 The estimated n(z) using ECDFS FZB (top panel) and TPZ (bottom panel) photo-\(z\) estimates and applying the “all colors” color cut. In both panels, the lighter color is used to display the distribution before applying the color cut, and darker after. Note that we have applied several additional weak lensing cuts as apposed to the simple photometry quality flags in Fig. 6.#

Note

Add shear ratio plots for pz cuts using 2 bins if any of them are good.

References#

[1]

Narciso Benitez. Bayesian photometric redshift estimation. The Astrophysical Journal, 536(2):571–583, June 2000. URL: http://dx.doi.org/10.1086/308947, doi:10.1086/308947.

[2]

DESI Collaboration, M. Abdul-Karim, A. G. Adame, D. Aguado, J. Aguilar, S. Ahlen, S. Alam, G. Aldering, D. M. Alexander, R. Alfarsy, L. Allen, C. Allende Prieto, O. Alves, A. Anand, U. Andrade, E. Armengaud, S. Avila, A. Aviles, H. Awan, S. Bailey, A. Baleato Lizancos, O. Ballester, A. Bault, J. Bautista, S. BenZvi, L. Beraldo e Silva, J. R. Bermejo-Climent, F. Beutler, D. Bianchi, C. Blake, R. Blum, A. S. Bolton, M. Bonici, S. Brieden, A. Brodzeller, D. Brooks, E. Buckley-Geer, E. Burtin, R. Canning, A. Carnero Rosell, A. Carr, P. Carrilho, L. Casas, F. J. Castander, R. Cereskaite, J. L. Cervantes-Cota, E. Chaussidon, J. Chaves-Montero, S. Chen, X. Chen, T. Claybaugh, S. Cole, A. P. Cooper, M. -C. Cousinou, A. Cuceu, T. M. Davis, K. S. Dawson, R. de Belsunce, R. de la Cruz, A. de la Macorra, A. de Mattia, N. Deiosso, J. Della Costa, R. Demina, U. Demirbozan, J. DeRose, A. Dey, B. Dey, J. Ding, Z. Ding, P. Doel, K. Douglass, M. Dowicz, H. Ebina, J. Edelstein, D. J. Eisenstein, W. Elbers, N. Emas, S. Escoffier, P. Fagrelius, X. Fan, K. Fanning, V. A. Fawcett, E. Fernández-García, S. Ferraro, N. Findlay, A. Font-Ribera, J. E. Forero-Romero, D. Forero-Sánchez, C. S. Frenk, B. T. Gänsicke, L. Galbany, J. García-Bellido, C. Garcia-Quintero, L. H. Garrison, E. Gaztañaga, H. Gil-Marín, O. Y. Gnedin, S. Gontcho A Gontcho, A. X. Gonzalez-Morales, V. Gonzalez-Perez, C. Gordon, O. Graur, D. Green, D. Gruen, R. Gsponer, C. Guandalin, G. Gutierrez, J. Guy, C. Hahn, J. J. Han, J. Han, S. He, H. K. Herrera-Alcantar, K. Honscheid, J. Hou, C. Howlett, D. Huterer, V. Iršič, M. Ishak, A. Jacques, J. Jimenez, Y. P. Jing, B. Joachimi, S. Joudaki, R. Joyce, E. Jullo, S. Juneau, N. G. Karaçaylı, T. Karim, R. Kehoe, S. Kent, A. Khederlarian, D. Kirkby, T. Kisner, F. -S. Kitaura, N. Kizhuprakkat, H. Kong, S. E. Koposov, A. Kremin, A. Krolewski, O. Lahav, Y. Lai, C. Lamman, T. -W. Lan, M. Landriau, D. Lang, J. U. Lange, J. Lasker, J. M. Le Goff, L. Le Guillou, A. Leauthaud, M. E. Levi, S. Li, T. S. Li, K. Lodha, M. Lokken, Y. Luo, C. Magneville, M. Manera, C. J. Manser, D. Margala, P. Martini, M. Maus, J. McCullough, P. McDonald, G. E. Medina, L. Medina-Varela, A. Meisner, J. Mena-Fernández, A. Menegas, M. Mezcua, R. Miquel, P. Montero-Camacho, J. Moon, J. Moustakas, A. Muñoz-Gutiérrez, D. Muñoz-Santos, A. D. Myers, J. Myles, S. Nadathur, J. Najita, L. Napolitano, J. A. Newman, F. Nikakhtar, R. Nikutta, G. Niz, H. E. Noriega, N. Padmanabhan, E. Paillas, N. Palanque-Delabrouille, A. Palmese, J. Pan, Z. Pan, D. Parkinson, J. Peacock, W. J. Percival, A. Pérez-Fernández, I. Pérez-Ràfols, P. Peterson, J. Piat, M. M. Pieri, M. Pinon, C. Poppett, A. Porredon, F. Prada, R. Pucha, F. Qin, D. Rabinowitz, A. Raichoor, C. Ramírez-Pérez, S. Ramirez-Solano, M. Rashkovetskyi, C. Ravoux, A. H. Riley, A. Rocher, C. Rockosi, J. Rohlf, A. J. Ross, G. Rossi, R. Ruggeri, V. Ruhlmann-Kleider, C. G. Sabiu, K. Said, A. Saintonge, L. Samushia, E. Sanchez, N. Sanders, C. Saulder, E. F. Schlafly, D. Schlegel, D. Scholte, M. Schubnell, H. Seo, A. Shafieloo, R. Sharples, J. Silber, M. Siudek, A. Smith, D. Sprayberry, J. Suárez-Pérez, J. Swanson, T. Tan, G. Tarlé, P. Taylor, G. Thomas, R. Tojeiro, R. J. Turner, W. Turner, L. A. Ureña-López, R. Vaisakh, M. Valluri, M. Vargas-Magaña, L. Verde, M. Walther, B. Wang, M. S. Wang, W. Wang, B. A. Weaver, N. Weaverdyck, R. H. Wechsler, M. White, M. Wolfson, J. Yang, C. Yèche, S. Youles, J. Yu, S. Yuan, E. A. Zaborowski, P. Zarrouk, H. Zhang, C. Zhao, R. Zhao, Z. Zheng, R. Zhou, H. Zou, S. Zou, and Y. Zu. Data release 1 of the dark energy spectroscopic instrument. 2025. URL: https://arxiv.org/abs/2503.14745, arXiv:2503.14745.

[3]

C. Combet, A. Plazas Malagón, S. Fu, P. Adari, I. Dell'Antonio, A. Englert, M. Gorsuch, K. Laliotis, P.-F. Léget, E. Pedersen, A. von der Linden, Y. Zhang, and et al. (TBC). PSF assessment in the field of Abell 360 and shapeHSM shear profile using LSSTComCam data. Commissioning Technical Note SITCOMTN-161, Vera C. Rubin Observatory, July 2025. URL: https://sitcomtn-161.lsst.io/.

[4]

N. Dalmasso, T. Pospisil, A.B. Lee, R. Izbicki, P.E. Freeman, and A.I. Malz. Conditional density estimation tools in python and r with applications to photometric redshifts and likelihood-free cosmological inference. Astronomy and Computing, 30:100362, January 2020. URL: http://dx.doi.org/10.1016/j.ascom.2019.100362, doi:10.1016/j.ascom.2019.100362.

[5] (1,2,3)

Melissa Graham. Photometric redshifts for ComCam data. Commissioning Technical Note SITCOMTN-154, Vera C. Rubin Observatory, June 2025. URL: https://sitcomtn-154.lsst.io/.

[6]

Leanne P. Guy, Keith Bechtol, Eric Bellm, Bob Blum, Gregory P. Dubois-Felsmann, Melissa L. Graham, Željko Ivezić, Robert H. Lupton, Phil Marshall, Colin T. Slater, and Michael Strauss. Rubin Observatory Plans for an Early Science Program. Technical Note RTN-011, Vera C. Rubin Observatory, May 2025. URL: https://rtn-011.lsst.io/, doi:10.5281/zenodo.5683848.

[7]

Rafael Izbicki, Ann B. Lee, and Peter E. Freeman. Photo-$z$ estimation: An example of nonparametric conditional density estimation under selection bias. The Annals of Applied Statistics, 11(2):698 – 724, 2017. URL: https://doi.org/10.1214/16-AOAS1013, doi:10.1214/16-AOAS1013.

[8]

Xiangchong Li, Hironao Miyatake, Wentao Luo, Surhud More, Masamune Oguri, Takashi Hamana, Rachel Mandelbaum, Masato Shirasaki, Masahiro Takada, Robert Armstrong, Arun Kannawadi, Satoshi Takita, Satoshi Miyazaki, Atsushi J Nishizawa, Andres A Plazas Malagon, Michael A Strauss, Masayuki Tanaka, and Naoki Yoshida. The three-year shear catalog of the subaru hyper suprime-cam ssp survey. Publications of the Astronomical Society of Japan, 74(2):421–459, March 2022. URL: http://dx.doi.org/10.1093/pasj/psac006, doi:10.1093/pasj/psac006.

[9]

R. Mandelbaum, C. M. Hirata, M. Ishak, U. Seljak, and J. Brinkmann. Detection of large-scale intrinsic ellipticity–density correlation from the sloan digital sky survey and implications for weak lensing surveys. Monthly Notices of the Royal Astronomical Society, 367(2):611–626, April 2006. URL: http://dx.doi.org/10.1111/j.1365-2966.2005.09946.x, doi:10.1111/j.1365-2966.2005.09946.x.

[10] (1,2)

Sam Schmidt, Julia Gschwend, John Franklin Crenshaw, Zi'ang Yan, Eric Charles, Alex Malz, Shahab Joudaki, Olivia R. Lynn, Luca Tortorelli, hangqianjun, joezuntz, imoskowitz, Bryce Kalmbach, jlvdb, sylvielsstfr, Johann Cohen-Tanugi, Josue De Santiago, Drew Oldag, Melissa DeLucchi, sjs86, vladislav doster, Francois Lanusse, and Heather Kelly. Lsstdesc/rail: v0.98.5. May 2023. URL: https://doi.org/10.5281/zenodo.7927358, doi:10.5281/zenodo.7927358.

[11]

Matias Carrasco Kind and Robert J. Brunner. TPZ: photometric redshift PDFs and ancillary information by using prediction trees and random forests. \mnras , 432(2):1483–1501, June 2013. arXiv:1303.7269, doi:10.1093/mnras/stt574.

[12]

ChangHoon Hahn, Michael J. Wilson, Omar Ruiz-Macias, Shaun Cole, David H. Weinberg, John Moustakas, Anthony Kremin, Jeremy L. Tinker, Alex Smith, Risa H. Wechsler, Steven Ahlen, Shadab Alam, Stephen Bailey, David Brooks, Andrew P. Cooper, Tamara M. Davis, Kyle Dawson, Arjun Dey, Biprateep Dey, Sarah Eftekharzadeh, Daniel J. Eisenstein, Kevin Fanning, Jaime E. Forero-Romero, Carlos S. Frenk, Enrique Gaztañaga, Satya Gontcho A Gontcho, Julien Guy, Klaus Honscheid, Mustapha Ishak, Stéphanie Juneau, Robert Kehoe, Theodore Kisner, Ting-Wen Lan, Martin Landriau, Laurent Le Guillou, Michael E. Levi, Christophe Magneville, Paul Martini, Aaron Meisner, Adam D. Myers, Jundan Nie, Peder Norberg, Nathalie Palanque-Delabrouille, Will J. Percival, Claire Poppett, Francisco Prada, Anand Raichoor, Ashley J. Ross, Sasha Gaines, Christoph Saulder, Eddie Schlafly, David Schlegel, David Sierra-Porta, Gregory Tarle, Benjamin A. Weaver, Christophe Yèche, Pauline Zarrouk, Rongpu Zhou, Zhimin Zhou, and Hu Zou. The DESI Bright Galaxy Survey: Final Target Selection, Design, and Validation. \aj , 165(6):253, June 2023. arXiv:2208.08512, doi:10.3847/1538-3881/accff8.

[13]

Christopher Hirata and Uroš Seljak. Shear calibration biases in weak-lensing surveys. \mnras , 343(2):459–480, August 2003. arXiv:astro-ph/0301054, doi:10.1046/j.1365-8711.2003.06683.x.

[14]

Rachel Mandelbaum, François Lanusse, Alexie Leauthaud, Robert Armstrong, Melanie Simet, Hironao Miyatake, Joshua E. Meyers, James Bosch, Ryoma Murata, Satoshi Miyazaki, and Masayuki Tanaka. Weak lensing shear calibration with simulations of the HSC survey. \mnras , 481(3):3170–3195, December 2018. arXiv:1710.00885, doi:10.1093/mnras/sty2420.

[15]

Rachel Mandelbaum, Hironao Miyatake, Takashi Hamana, Masamune Oguri, Melanie Simet, Robert Armstrong, James Bosch, Ryoma Murata, François Lanusse, Alexie Leauthaud, Jean Coupon, Surhud More, Masahiro Takada, Satoshi Miyazaki, Joshua S. Speagle, Masato Shirasaki, Cristóbal Sifón, Song Huang, Atsushi J. Nishizawa, Elinor Medezinski, Yuki Okura, Nobuhiro Okabe, Nicole Czakon, Ryuichi Takahashi, William R. Coulton, Chiaki Hikage, Yutaka Komiyama, Robert H. Lupton, Michael A. Strauss, Masayuki Tanaka, and Yousuke Utsumi. The first-year shear catalog of the Subaru Hyper Suprime-Cam Subaru Strategic Program Survey. \pasj , 70:S25, January 2018. arXiv:1705.06745, doi:10.1093/pasj/psx130.

[16]

H. Quintana and A. Ramirez. Redshifts of 165 Abell and Southern Rich Clusters of Galaxies. \apjs , 96:343, February 1995. doi:10.1086/192122.

[17]

A. Raichoor, J. Moustakas, Jeffrey A. Newman, T. Karim, S. Ahlen, Shadab Alam, S. Bailey, D. Brooks, K. Dawson, A. de la Macorra, A. de Mattia, A. Dey, Biprateep Dey, G. Dhungana, S. Eftekharzadeh, D. J. Eisenstein, K. Fanning, A. Font-Ribera, J. García-Bellido, E. Gaztañaga, S. Gontcho A Gontcho, J. Guy, K. Honscheid, M. Ishak, R. Kehoe, T. Kisner, Anthony Kremin, Ting-Wen Lan, M. Landriau, L. Le Guillou, Michael E. Levi, C. Magneville, M. Manera, P. Martini, Aaron M. Meisner, Adam D. Myers, Jundan Nie, N. Palanque-Delabrouille, W. J. Percival, C. Poppett, F. Prada, A. J. Ross, V. Ruhlmann-Kleider, C. G. Sabiu, E. F. Schlafly, D. Schlegel, Gregory Tarlé, B. A. Weaver, Christophe Yèche, Rongpu Zhou, Zhimin Zhou, and H. Zou. Target Selection and Validation of DESI Emission Line Galaxies. \aj , 165(3):126, March 2023. arXiv:2208.08513, doi:10.3847/1538-3881/acb213.

[18]

Rongpu Zhou, Biprateep Dey, Jeffrey A. Newman, Daniel J. Eisenstein, K. Dawson, S. Bailey, A. Berti, J. Guy, Ting-Wen Lan, H. Zou, J. Aguilar, S. Ahlen, Shadab Alam, D. Brooks, A. de la Macorra, A. Dey, G. Dhungana, K. Fanning, A. Font-Ribera, S. Gontcho A. Gontcho, K. Honscheid, Mustapha Ishak, T. Kisner, A. Kovács, A. Kremin, M. Landriau, Michael E. Levi, C. Magneville, Marc Manera, P. Martini, Aaron M. Meisner, R. Miquel, J. Moustakas, Adam D. Myers, Jundan Nie, N. Palanque-Delabrouille, W. J. Percival, C. Poppett, F. Prada, A. Raichoor, A. J. Ross, E. Schlafly, D. Schlegel, M. Schubnell, Gregory Tarlé, B. A. Weaver, R. H. Wechsler, Christophe Yéche, and Zhimin Zhou. Target Selection and Validation of DESI Luminous Red Galaxies. \aj , 165(2):58, February 2023. arXiv:2208.08515, doi:10.3847/1538-3881/aca5fb.